

0

Data Analytics Plan – Phase 1

JUNE 2025

Contents

Document Introduction .. 1

Proof of Concept Architecture Overview 1

Technology Solutions .. 8

MioVision ... 8

Median Travel Time ... 8

Intersection HiRes data ... 8

Intersection TMC data ... 9

RITIS.. 9

Region Explorer .. 9

Massive Data Downloader .. 9

Congestion Scan ... 9

Corridor Speed Bins .. 11

Corridor Time Comparison .. 11

Trend Map .. 12

Performance Charts .. 12

Performance Summaries ... 12

Bottleneck Ranking ... 12

User Delay Cost Analysis .. 12

Dashboard .. 12

Travel Time Delta Ranking ... 13

Travel Time Comparison .. 13

Temporal Comparison Maps ... 13

Causes of Congestion Graphs ... 13

On-Premises Data Lake.. 13

Technical Architecture Overview .. 13

Structured Data ... 13

Semi-Structured Data ... 14

Unstructured Data .. 20

Cloud Data Lake/Warehouse Solutions 22

Azure ... 22

Azure Data Lake Storage .. 22

Azure DataBricks ... 26

Azure Synapse Analytics ... 29

Azure Data Factory .. 33

Azure Ecosystem Flexibility .. 37

Appendix A: API Tables .. 39

1

Document Introduction
This document is intended to serve as a resource for developing a Data Analytics platform

that will connect the technology infrastructure in the Smart Regions Master Plan to the

Regional Transportation Management Center (RTMC). This living document will cover

existing technology solutions currently deployed by the Region and may change over time

as new solutions are introduced to the transportation system and RTMC. It will also detail

various “data lake” solutions that can be created in the RTMC to house data from technology

solutions. The goal is to make this data available to the region and empower stakeholders to

create dashboards for data analysis.

The process for this project started with interviews with private and public stakeholders.

Once the project was kicked off, staff moved onto completing tasks en route to our proof of

concept. While working on the proof of concept, staff presented at monthly traffic meetings

to track progress and gain feedback on progress towards a completed proof of concept.

This document is organized into four sections:

• Proof of Concept Architecture Overview: Details the software solutions used to

achieve the result in the proof of concept.

• Technology Solutions: Discusses the client-side technology that allows us to collect

data from controllers out in the field.

• On-Premises Data Lake: Evaluates possible software solutions our team can use in

the case of an on-premises data lake.

• Cloud Data Lake/Warehouse Solutions: Evaluates possible software solutions our

team can use in the case of a cloud-based data lake.

Proof of Concept Architecture Overview
For Phase I of the project, the team developed a proof-of-concept data lake specifically

designed to scale and adapt to ECRC’s requirements. This initial version includes automated

data pipelines that streamline data flow into and out of the data lake, ensuring continuous

and seamless data integration. Additionally, the data lake supports various analytics

options—ranging from intuitive dashboards and visualizations to more sophisticated real-

time analytics, big data processing, and machine learning applications, helping ECRC make

informed, data-driven decisions.

This foundational proof-of-concept also provides a robust system capable of expanding as

requirements grow, offering flexibility to scale and adapt according to evolving operational

needs.

2

Data Pipelines

Three components are required to build a data pipeline:

1. A data sender

2. A data receiver

3. A common communication protocol

The sender includes cameras and controllers using MioVision software in this proof of

concept. The data lake acts as the receiver, collecting and storing this information. An

Application Programming Interface (API) was introduced to ensure a common

communication protocol.

An API sets clear guidelines for exchanging information between two different systems or

devices. It enforces a set of rules telling each system how to request data and how to respond

clearly. Using these rules, the MioVision cameras and controllers can send data directly to

the data lake without errors.

APIs often use common web methods—like clicking links or submitting forms online—to

send and receive information. They usually format data in simple, easy-to-read formats like

JSON or XML. This standardization makes the data reliable and easy to handle.

Additionally, APIs have built-in ways to keep communication secure using encryption and

user validation, ensuring only approved systems or people can access sensitive data. They

also make adding new equipment or changes easier since every new device can use the same

clear set of communication rules.

The API is the common communication protocol in this proof of concept. An API serves as

the entry and exit point for data within the data lake. Its common web methods allow system

configurators to quickly and easily configure current services or add more if needed. APIs

are also not storage type specific. As the system requirements expand, the API can currently

meet those needs or quickly be expanded to create a new pipeline to include that

functionality.

3

Power BI Dashboard

This Power BI dashboard visualizes processed Turning Movement Count (TMC) and

intersection data from the MioVision API. The dashboard features:

• A geospatial map displaying intersections across Pensacola, including areas like East

Milton, Ensley, Brent, Ferry Pass, and West Pensacola

• Time filtering capabilities with 15-minute interval timestamps

• Detailed movement counts broken down by direction at the highlighted intersection

Directional traffic flow metrics include:

• Northbound movements

• Eastbound movements

• Westbound movements

• Southbound movements

Vehicle types actively being recorded by MioVision Smart Sense Cameras:

• Pedestrians

4

• Bicycle

• Light (motorcycles, cars & pickup trucks)

• Work van

• Single unit truck

• Articulated Truck

• Bus

The dashboard will enable transportation analysts to filter by timestamp, day, and vehicle

class (light to analyze traffic patterns and movement counts at specific intersections. This

data visualization tool helps traffic engineers and urban planners make informed decisions

about signal timing, road capacity, and infrastructure improvements based on actual traffic

volumes by direction and time period.

Power BI Dashboard using Miovision data

Unstructured Data

MinIO

MinIO is a high-performance, open-source object storage system optimized for cloud-native

applications but can also be deployed for on-premises storage. It is widely used for building

scalable and efficient storage infrastructure in enterprises. MinIO is the entry point for data

coming into the pipeline.

5

When building this part of the service for proof of concept, an emphasis was put on scalability

and flexibility. MinIO’s “object storage” framework allows for both. Unlike a database, object

storage does not need to know what format the data is in to successfully store a data “object.”

This allows MinIO to serve as a catch-all for any data entering the pipeline from the API.

Structured Data

MySQL

MySQL was chosen for data storage of structured data; SQL, short for Structured Query

Language, is a data storage framework that allows large amounts of data to be stored and

processed quickly and efficiently. Several popular variations of SQL databases exist,

including Microsoft SQL Server, PostgreSQL, and MySQL. After factoring in price and ease of

use, MySQL was chosen as the platform for structured data storage.

The main benefits to any SQL provider over a comparable technology like Excel are its

integration with SQL and having no limit on the number of rows in a single table. Using SQL,

you can iterate over and process millions of rows of data in a short timeframe with very little

code. The database structure of MySQL also benefits the implementation by ensuring data

can be stored safely and securely.

Deployment and Maintenance

Docker

This proof-of-concept data lake's deployment and maintenance process has been simplified

using a software deployment process called containerization. Containerization breaks the

components of the data lake into smaller chunks known as “containers” that each house

their own individual services. Each container serves its own purpose, orchestrated and

connected through an internal network that provides secure communication channels

between services.

Docker is an industry-standard software that handles the containerization of this data lake.

Using Docker, three containers have been created: The API ingestion service that pulls data

from the MioVision API, MinIO Object Storage, and MySQL tabular storage.

Containerizing each piece of the data lake has many benefits. Docker allows administrators

to update software at will without needing large maintenance windows. Using the Docker

framework, each update can be pushed to the application repository by developers,

engineers, and other power users and pulled down by others from the repository, allowing

for components to be easily shared and grown upon.

There are also benefits in system uptime by using Docker containers. Containers are

designed to operate independently from each other, making errors easier to identify and

resolve without bringing the whole system down. As a result, containers have a higher

tolerance for outages. Using orchestration software such as Docker, services can be told to

start up or shut down in certain conditions. Lastly, containers are very easy to scale due to

the fact they are virtualized within their host environment. There are no hardware

6

requirements to run a certain number of containers. They will operate within the framework

of the host environment.

Data Sources

The Advanced Traffic Signal Performance Measures (ATSPM) system collects various data to

analyze traffic signal performance and improve overall traffic flow. The data format typically

includes:

1. Signal Phase and Timing Information: Details about the signal phases, timing

intervals, and change intervals for each traffic signal.

2. Traffic Volume Data: Counts of vehicles, pedestrians, and cyclists at intersections

are often collected in real-time.

3. Delay Data: Information on the delay experienced by vehicles at intersections, which

helps identify inefficiencies.

4. Traffic Flow Trends: Patterns such as peak traffic hours and seasonal variations over

time.

5. Signal Compliance: Data on how well vehicles comply with signal changes, including

instances of red-light running.

6. Incident Data: Information about traffic incidents or disruptions affecting signal

performance.

This data is typically stored in a structured format, allowing for analysis and reporting, often

leveraging databases and visualization tools to assist traffic engineers in making informed

decisions.

The exact format that ATSPM data is collected in the format below.

Column Name Data Type Nullable

SignalID String No

Timestamp DateTime No

EventCode Int No

EventParam int No

1. SignalID: This unique identifier specifies which traffic signal is being referenced. It

allows for precise tracking of performance and events at specific intersections,

facilitating targeted analysis and reporting.

2. Timestamp: This data point records the exact date and time (down to the

millisecond) when an event occurs. Accurate timestamps are crucial for analyzing

traffic patterns, assessing signal timing effectiveness, and correlating events with

traffic conditions.

7

3. EventCode: This code represents the specific event being recorded by the traffic

signal controller, such as phase changes, malfunction alerts, or manual overrides. It

categorizes the nature of the event, enabling traffic engineers to identify trends and

issues in signal operation.

4. EventParam: This parameter indicates the specific phase of the traffic signal during

which the event occurs (e.g., green, yellow, or red). Understanding the phase context

helps evaluate signal performance, compliance, and the impact of various phases on

traffic flow and safety.

Together, these data points provide a comprehensive view of traffic signal operations,

allowing for effective analysis and improvements in traffic management strategies.

Controllers recording these events take second by second measurements, depending on the

number of controllers.

Event

Code

Event Descriptor

0 Phase On

1 Phase Begin Green

2 Phase Check

3 Phase Min Complete

4 Phase Gap Out

5 Phase Max Out

6 Phase Green Termination

7 Phase Green Termination

8 Phase Begin Yellow Clearance

9 Phase End Yellow Clearance

10 Phase Begin Red Clearance

11 Phase End Red Clearance

12 Phase Inactive

21 Pedestrian Begin Walk

43 Phase Call Registered

45 Pedestrian Call Registered

81 Detector Off

82 Detector On

8

Technical Summary

There are two types of data storage used in this proof of concept: Structured (database

tables) and Unstructured (files). A separate module was used to store each kind of data. To

facilitate data entry into the lake, the API ingestion tool was developed. This tool serves as a

connection between the MioVision API and the unstructured data module, as well as a

connection between the unstructured data module and the structured data module. For the

modules to easily operate together, a packaging system was used. Docker is the industry-

standard software used to package all these modules to ensure they can communicate with

each other efficiently and securely. Lastly, a Power BI dashboard was developed to present

the data in a human readable format.

Technology Solutions
This section describes two platforms leveraged by the region that can be integrated with the

RTMC. This is intended to be a living document that is expanded upon as new technologies

are incorporated to the region.

MioVision

MioVision is currently used for FL-AL TPO and has 338 signals with MioVision hardware

installed and configured in the MioVision ONE UI/Web application. This web application lets

users view real-time data from MioVision hardware, such as Intersection Health Metrics,

insights, and analysis. Users can also access live camera feeds and detector data directly

from the website.

The MioVision API has many different endpoints related to Alerts, Cameras, Diagnostics,

Intersections, Organization information, Priority Requests, TMC information, Median Travel

Time, and User information.

Median Travel Time

The Median Travel time endpoint allows the retrieval of Travel Time between the specified

intersections for a 24-hour period, aggregated into 15-minute bins.

By default, results are aggregated into 1-minute bins. This can be changed by adding a

binSize parameter (Integer) to the query string, changing the number of minutes. The unit

of time can be changed by adding a binUnits parameter (String) to the query string. Valid bin

units include: [Minute, Hour, Day].

By default, the 24-hour period ends at the time the request is submitted. The end of the 24-

hour period can be specified with the endDateTime parameter.

Intersection HiRes data

Returns telemetry data from the intersection in the HiRes Data Format. This data can be

collected in a maximum of one-hour increments.

9

Intersection TMC data

We can retrieve full Turning Movement Count data (Count, Direction of travel, class, and

detected movement) for each individual intersection for a two-day period with a variable

minute/hour/day binsize with a maximum period of 48 hours. MioVision SmartSense (vehicle

detection software running ON can distinguish vehicle Classes into [Pedestrian, Bicycle, Light,

WorkVan, SingleUnitTruck, ArticulatedTruck, Bus] buckets, which can also be specified in the

query. This data can be manipulated in code as a json OR downloaded as a CSV file via

another CSV specific endpoint. For a lane granular retrieval of data, there is a lane specific

endpoint that specifies the lane of arrival of vehicles (No CSV download for this). There is

also a similar endpoint for data relating to pedestrian crossing TMC data. This endpoint

retrieves counts, directions of travel, and classes (bike or ped) in similar bins with a max

period of 48 hours.

Additional details can be found in Appendix A.

RITIS

RITIS, or the Regional Integrated Transportation Information System, is a collaborative

platform that provides real-time and historical data on transportation systems. It is used by

transportation agencies, public safety officials, and other stakeholders to manage and

analyze traffic conditions, incidents, and infrastructure performance. RITIS aggregates data

from various sources, including traffic sensors, cameras, and GPS, offering tools for data

visualization, analysis, and decision support to improve transportation system efficiency and

safety. The platform is particularly valuable for regional coordination and incident

management. The following feature descriptions and example images will briefly describe

the capabilities of the PDA (probe data analytics) Software Suite.

Region Explorer

The Region Explorer tool shows the relationship between bottlenecks and traffic events on

roadways and their impact on traffic. This tool works on both active real-time events and

historical events.

Massive Data Downloader

The Massive Data Downloader allows users to download CSV probe data in bulk. You can

customize your reports by choosing which roads, dates, and time periods to include and how

to aggregate the data.

Congestion Scan

10

The Congestion Scan tool allows users to analyze real-time and historical traffic conditions

along a set stretch of road. This tool enables users to select types of road segments, different

probe data providers, date and time for analysis, and the granularity of data and roads. Users

can run bulk reports simultaneously by selecting multiple roads and time periods rather than

running multiple reports back-to-back.

Daily reports allow users to view incident statistics and traffic conditions throughout the day

and how they affect traffic along a roadway.

11

Corridor Speed Bins

The Corridor Speed Bins tool enables users to count probe readings related to congestion

metrics. This data is then aggregated into bins and displayed along the corresponding

sections of the road, providing a clear view of congestion patterns.

Corridor Time Comparison

The Corridor Time Comparison tool visualizes congestion along road corridors by displaying

bi-directional line charts for selected road segments. It combines elements of performance

12

charts and congestion scans, allowing users to compare traffic data across one or two date

ranges and up to seven different times of day, totaling 14 possible combinations. Users can

analyze various metrics, including speed, congestion, travel time index, buffer index, and

planning time index, providing a comprehensive view of traffic patterns.

Trend Map

The Trend Map tool generates animated maps that visualize metrics based on raw speed

data and performance metrics. Each map is accompanied by a chart that displays the

distribution of speeds over the corresponding time periods.

Performance Charts

The Performance Charts tool includes bar, line, plot, and candlestick charts that display

aggregate conditions across road sections. These charts can be organized by time period or

road direction, with TMCs in the same direction, even on different roads, combined into

direction-based charts.

Performance Summaries

The Performance Summaries tool enables the creation of reports on performance metrics

by day of the week, weekdays, and weekends for specific road stretches. Users can select

roads, date ranges, data sources, and time periods, then analyze the results using tabs for

different time periods and road directions. The summaries include metrics like buffer time

and buffer index and can be exported to Excel, saved as screenshots, or viewed in other tools

within the Probe Data Analytics Suite.

Bottleneck Ranking

The Bottleneck Ranking tool helps identify, rank, and explore traffic bottlenecks on

roadways. Three metrics—Magnitude of Speed Drops, Severity of Congestion, and Estimated

Total Delay—allow users to weigh the traditional base impact metric for better insights. The

default table view is sorted by base impact weighted by total delay, but users can re-sort by

other metrics.

User Delay Cost Analysis

The User Delay Cost Analysis tool combines probe speed data with volume data to estimate

the cost of delays caused by congestion.

Dashboard

The Dashboard tool lets you create and manage collections of widgets to monitor roadway

performance. Upon first use, you’ll name your dashboard and can create multiple

dashboards as needed. Available widgets include Speed and Travel Timetable, Ranked

Bottleneck Table, Reliability Table, MAP-21, User Delay Cost Table, Ranked Bottleneck

Comparison, Event Count, Clearance Time, and Energy Use and Emissions Table.

13

Travel Time Delta Ranking

The Travel Time Delta Ranking tool enables users to rank and compare performance changes

in corridors between two time periods. It is designed for before-and-after analysis of corridor

performance improvement projects but can also be used to analyze changes along multiple

roadways between any two time periods.

Travel Time Comparison

The Travel Time Comparison tool lets users compare travel time distributions between two

selected corridors during specified times of day.

Temporal Comparison Maps

The Temporal Comparison Maps tool allows users to analyze performance metrics for road

segments across selected time periods and ranges. You can choose up to 7 time periods and

ranges, visualize metrics on maps, and compare deltas between them. The tool offers

options to select metrics, compare by dates or time ranges, and choose specific maps or

delta comparisons. Hovering over a road segment displays a description and metric value,

and you can choose a base period for comparison based on your selected options.

Causes of Congestion Graphs

The Causes of Congestion Graphs tool helps identify and quantify the impact of different

congestion causes based on user delay cost. The primary categories include recurrent,

weather, work zone, incident, signals, holiday, multiple causes, and unclassified.

On-Premises Data Lake

Technical Architecture Overview

A data lake is a centralized repository that allows you to store all your semi-structured and

unstructured data at any scale. You can store your data as-is without having to first structure

the data and run different types of analytics—from dashboards and visualizations to big data

processing, real-time analytics, and machine learning to guide better decisions.

Structured Data

Data Warehouses like Tableau and Snowflake are excellent for storing and accessing

structured data because they are optimized for performance, scalability, and complex

analytical queries. In a data warehouse, structured data is stored in well-defined tables with

a strict schema, allowing fast SQL-based queries and deep analysis. These platforms excel at

delivering quick insights from structured datasets, particularly for business intelligence (BI)

applications like Tableau, where users can visualize and interact with data efficiently.

However, to integrate structured data with the broader range of formats handled by data

lakes, structured data may need to be converted to semi-structured formats like JSON, Avro,

or Parquet. This conversion allows structured data to coexist with semi-structured (e.g., logs,

JSON) and unstructured data (e.g., images, videos) in the flexible environment of a data lake.

14

Data lakes store vast amounts of data cost-effectively, but they lack the optimized querying

performance of data warehouses.

The emergence of data lakehouses bridges the gap between these two worlds. A data

lakehouse combines the best aspects of both data warehouses and data lakes—offering the

performance and structure of a warehouse while maintaining the flexibility and scalability of

a lake. This unified architecture allows for easy access to structured data with SQL queries

while simultaneously supporting the semi-structured and unstructured data formats

common in data lakes. It essentially merges high-performance analytics with the storage

flexibility of a lake, providing a single solution for all data types.

Semi-Structured Data

Semi-structured data in a data lake is typically stored in a way that maintains its organization

while benefiting from the scalability and flexibility of the lake. Data lakes often store

structured data in open, standardized file formats optimized for performance and analytics.

File formats:

• CSV (Comma-Separated Values): CSV is a simple, widely used file format for storing

tabular data in plain text. Each line in a CSV file represents a row in the table, and data

fields in that row are separated by commas (or other delimiters). CSV is popular for

data exchange and lightweight data storage, with the following key features:

o Simplicity: CSV is straightforward, consisting of plain text files where each line

corresponds to a record, and each field is separated by a comma (or another

delimiter such as a semicolon, tab, or space). This simplicity makes it easy to

understand, create, and edit manually.

o Human-Readable: CSV files are human-readable and can be opened and

edited in a basic text editor or spreadsheet software like Microsoft Excel or

Google Sheets without the need for specialized software.

o No Data Types: CSV doesn't inherently support data types or schema. All data

is stored as plain text, which may require additional parsing and validation

when imported into a database or other software.

o Schema-Free: CSV files do not enforce any structure or schema, making them

flexible but also requiring external handling of data validation and type

enforcement.

o Portability: CSV files are portable and compatible across many different

systems, platforms, and applications. They are often used for data exchange

between programs, databases, and systems that don’t require complex data

structures.

o No Compression: CSV files are plain text and typically do not support built-in

compression, which can result in larger file sizes compared to binary formats

like Avro or Parquet.

15

o Lack of Advanced Features: CSV lacks support for advanced features like

schema evolution, complex data types (nested structures), or metadata. This

makes CSV less suitable for big data use cases or complex data storage

requirements.

o Wide Software Support: CSV is supported by virtually all data-processing tools,

including databases, programming languages, and business applications. Its

simplicity and ubiquity make it a common format for exporting and importing

data between different systems.

o Limited Performance for Large Datasets: CSV stores data in a row-based

format and lacks the optimizations seen in columnar formats like Parquet or

ORC. For large datasets, CSV can be inefficient in terms of storage and query

performance, especially for analytical workloads where only specific columns

are needed.

o No Data Validation: CSV does not include built-in mechanisms for validating

the consistency or correctness of the data, meaning additional tools or scripts

are often required for data cleaning and validation.

o File Size and I/O: Since CSV is a plain text format, it tends to be less efficient in

terms of file size and I/O performance, especially when handling large

datasets.

o CSV is a highly portable and accessible file format, ideal for lightweight data

exchange and simpler use cases, but its lack of advanced features and

performance limitations make it less suitable for complex data storage and

analysis in big data environments.

• Apache Parquet: Apache Parquet is a columnar storage file format designed to

efficiently store and process large-scale data, primarily in distributed systems like

Hadoop and Apache Spark. Parquet offers several important features, including:

o Columnar Storage: Parquet stores data in a columnar format, which optimizes

query performance by allowing systems to read only the specific columns

needed rather than the entire dataset. This makes Parquet ideal for analytical

workloads.

o Schema Evolution: Parquet supports schema evolution, enabling changes to

the schema over time without breaking compatibility with previous versions

of the data.

o Efficient Compression: Parquet uses efficient compression techniques at the

column level, such as Snappy, Gzip, or ZSTD. Columnar compression typically

provides better compression ratios compared to row-based formats because

similar data types are stored together.

16

o Predicate Pushdown: Parquet allows queries to filter data at the storage level

(predicate pushdown), reducing the amount of data read from storage and

improving performance in data retrieval operations.

o Splitting Large Files: Parquet stores data in chunks called row groups, enabling

efficient reading and parallel processing of specific file sections without

reading the entire dataset. This is especially useful for distributed data

processing frameworks.

o Data Types: Parquet supports complex data types (like nested structures,

arrays, and maps), which makes it highly versatile for various kinds of

structured and semi-structured data.

o Interoperability: Parquet is highly interoperable across different big data tools

and frameworks like Apache Spark, Hadoop, Hive, and Impala, making it a

popular choice for big data processing.

o Portability: Parquet files can be shared and used across different systems

without any issues related to schema interpretation or formatting.

o Performance: Parquet’s columnar storage model significantly improves read

performance for analytical queries, as it reduces I/O by allowing selective

reading of columns, resulting in faster data retrieval.

o Ease of Use: Parquet is easy to use, integrate, and validate in modern data

platforms, and it is a go-to format for data warehousing, big data analytics, and

machine learning workloads.

o Parquet is often compared with other big data formats like Avro and ORC, but

its columnar format is particularly well-suited for analytical use cases.

• Apache Avro: Apache Avro is a file format that stores data in a binary format while

using JSON to define the data's structure. This format has several key features,

including:

o Schema evolution: Avro supports changing data schemas over time.

o Portability: Avro files are portable and can be read by different systems

without needing external schema references.

o Block storage: Avro stores data in blocks, allowing specific file sections to be

read without reading the entire dataset.

o Compression: Avro supports compression codecs to optimize storage and

performance.

o Serialization encodings: Avro supports two serialization encodings: binary and

JSON. Binary encoding is faster and smaller, while JSON encoding may be

better for debugging and web applications.

17

o Markers: Avro files include markers that can split large data sets into subsets

for Apache MapReduce processing.

o Ease of use: Avro is easy to use and validate.

o Avro is a popular file format for big data management, along with Parquet and

ORC.

Storage options:

• Hadoop Distributed File System (HDFS) for On-Premises Local Storage: Hadoop

Distributed File System (HDFS) is one of the most popular storage solutions for

managing large datasets in a distributed environment. It's designed for big data

processing in distributed clusters but can also be used for on-premises local storage

in enterprise environments. Here are some of the advantages that HDFS provides:

o Scalability: HDFS can easily scale horizontally by adding more nodes to the

cluster. This makes it ideal for on-premises environments where data grows

over time. (Nodes are just computers/hardware accessible on a common

network).

o Fault Tolerance: With built-in replication, HDFS ensures that data is highly

available, even if individual nodes fail. Data is automatically replicated across

different nodes to avoid loss.

o High Throughput: HDFS is optimized for high-throughput data access,

especially for read-heavy workloads. It works well for batch processing of large

files in formats like Parquet, Avro, and CSV.

o Supports Large Files: HDFS is designed to handle large datasets, which makes

it perfect for storing and processing big data, including structured, semi-

structured, and unstructured data.

o Cost Efficiency: HDFS runs on commodity hardware, reducing the overall

storage cost. It’s a good solution for organizations that want to avoid the high

cost of proprietary storage solutions.

o Parallel Processing: When combined with processing engines like Apache

Hadoop MapReduce or Apache Spark, HDFS allows for efficient parallel

processing of large datasets.

o Schema Flexibility: HDFS can store data in a variety of formats (CSV, Parquet,

Avro), making it versatile for different types of workloads and applications.

• MinIO for On-Premises Object Storage: MinIO is a high-performance, open-source

object storage system that is optimized for cloud-native applications but can also be

deployed for on-premises storage. It is widely used for building scalable and efficient

storage infrastructure in enterprises. Below are some of the key advantages of MinIO:

18

o Scalability: MinIO can scale seamlessly, both vertically and horizontally, by

adding more drives or nodes. This makes it an ideal choice for growing on-

premises storage needs.

o Fault Tolerance: With erasure coding and bitrot detection, MinIO provides

built-in data protection, ensuring data integrity and availability even during

hardware failures.

o High Performance: MinIO is optimized for high-throughput, low-latency data

access, making it well-suited for workloads like machine learning, analytics,

and large-scale content delivery.

o Supports Large Objects: MinIO can store large objects (up to 5TB per object)

and is designed to handle massive datasets, making it ideal for big data, media

files, and backups.

o Cost Efficiency: MinIO can be deployed on commodity hardware, enabling

cost-effective storage solutions for organizations that need scalable, high-

performance object storage without incurring significant hardware costs.

o S3 Compatibility: MinIO offers full compatibility with Amazon S3 API, making it

easy to integrate with a wide range of applications and tools that support S3-

based storage

o Multi-Cloud and Hybrid Deployments: MinIO can be deployed across private,

public, and hybrid cloud environments, providing flexibility and enabling

seamless data mobility between different storage systems.

o Security: MinIO provides enterprise-grade security features such as

encryption, identity management, and policy-based access control, ensuring

that stored data remains secure and compliant with regulatory requirements.

Accessing Structured Data from S3: The process of retrieving structured data from s3 buckets

is a multistep process requiring an S3 connector and distributed SQL query engine. There

are a few different technologies that facilitate users to make a direct connection to the

structured s3 data. The most used software is Hive-Metastore (part of the Apache Hadoop

ecosystem), in tandem with Trino, Dbeaver, and PostgreSQL. Since structured data is

compressed into storage file types that efficiently store data, we need to extract the

associated data and metadata.

• Trino: Trino is a high-performance, distributed SQL query engine that queries large

datasets across various data sources. It allows users to run SQL queries on data

stored in different systems (such as data lakes, databases, and object storage

systems) without moving or copying the data into a single location. Key aspects of

Trino include:

o Distributed Query Processing: Trino processes queries in parallel across a

distributed cluster of machines, which allows it to handle large-scale datasets

with high performance.

19

o Data Source Flexibility: Trino can query data from multiple types of sources

such as Hadoop Distributed File System (HDFS), Amazon S3, Google Cloud

Storage, traditional databases (like MySQL and PostgreSQL), and NoSQL

systems like Cassandra and MongoDB. It does this without importing or

duplicating data into a separate data warehouse.

o SQL Compatibility: Trino supports standard SQL, allowing users to write

complex queries to join, aggregate, and manipulate data from different

sources in a familiar language.

o Federated Queries: With Trino, you can run federated queries, meaning you

can query data from multiple data sources in a single SQL query. For example,

you can join a table from an S3 data lake with another table from MySQL

without moving the data.

o Schema-on-Read: Trino uses a schema-on-read approach, meaning it reads

and interprets the data schema at the time of the query rather than requiring

predefined schemas, which makes it well-suited for working with semi-

structured and unstructured data.

o Open-Source: Trino is an open-source project with a large, active community.

It evolved from a previous project called Presto, and it is maintained and

developed independently.

o Integration with Big Data Tools: Trino integrates well with other big data tools

like Apache Hive, Apache Kafka, Apache HBase, and Apache Iceberg, making it

a key component in modern data architectures.

o High Performance: Trino is designed for interactive querying, making it faster

than traditional batch-processing systems for running ad-hoc queries over big

data. It is particularly useful for analytics and business intelligence applications

where low-latency querying is important.

• Hive Metastore + Trino: The Hive Metastore is a centralized repository for storing

metadata about tables, databases, and data structures. Initially designed for Apache

Hive, it plays a crucial role in modern data platforms by allowing various data

processing engines to access shared metadata. In the context of Trino, a high-

performance distributed SQL query engine, the Hive Metastore manages schema

information and enables efficient data querying across different storage systems.

Here are some of the key advantages of using Hive Metastore with Trino:

o Centralized Metadata Management: Hive Metastore acts as a single source of

truth for metadata, enabling multiple file systems like Hive Trino and Spark to

access consistent information about the underlying data. This eliminates the

need for each system to maintain its own metadata.

20

o Schema Management: Hive Metastore stores schema details, making it easier

for Trino to query structured and semi-structured data stored in the above

formats (Parquet, ORC, and Avro) without manually defining schemas.

o Interoperability: Trino can query data from various storage systems using the

Hive Metastore, which allows access to data from multiple different s3

locations/platforms.

o Partitioned data handling: Hive Metastore tracks partitioned data, one of the

main performance benefits of using Trino. Trino can efficiently scan only

relevant portioned data, reducing the processing time and load during queries

and improving execution speed.

o Scalability: As datasets grow, the Hive Metastore supports large-scale data

environments, allowing Trino to work with distributed data across clusters

while maintaining performance and scale.

o Compatibility: Hive Metastore’s compatibility with different file formats and

storage systems ensures that Trino can integrate with various data lakes,

warehouses, and other big data ecosystems.

o Ease of Data Management: With Hive Metastore, managing table versions,

schema evolution, and data organization becomes straightforward, providing

Trino users with an organized and efficient way to query and manage large

datasets.

o Security and Access Control: When used with Trino, Hive Metastore supports

fine-grained access control and security features, ensuring that metadata and

the underlying data are protected and accessed securely based on user

permissions.

Unstructured Data

Unstructured data refers to information that does not adhere to a predefined data model or

format, making it challenging to organize, analyze, and process using traditional relational

databases. Unlike structured data, which is neatly organized into rows and columns in tables,

unstructured data lacks a consistent structure or schema. Here are some of the

characteristics of unstructured data.

Lack of Predefined Schema:

• Unstructured data does not fit into traditional table formats or relational database

schemas. It lacks a specific structure, making it challenging to categorize and query

using conventional methods.

Variety of Formats:

• It can come in many different formats, including:

o Text Files: Documents, emails, and social media posts.

21

o Multimedia: Images, videos, and audio recordings.

o Semi-Structured Data: JSON, XML, and log files that have some organizational

properties but do not fit neatly into a table.

o Web Content: HTML pages, blogs, and web crawls.

• Rich in Information:

o Despite its lack of structure, unstructured data often contains valuable insights

and information. For example, customer feedback in social media posts or

multimedia content in videos can provide rich, qualitative data.

• Complexity in Processing:

o Analyzing unstructured data typically requires advanced techniques such as

natural language processing (NLP), image recognition, and machine learning.

These techniques help extract meaningful patterns and insights from the raw

data.

Examples of Unstructured Data:

• Textual Content: Emails, news articles, and blog posts.

• Multimedia: Photographs, video recordings, and audio files.

• Social Media: Tweets, Facebook posts, and user comments.

• Documents: PDFs, Word documents, and presentations.

• Web Data: HTML content from websites and web crawls.

MinIO is an S3-compatible object storage solution designed for on-premises deployments,

making it ideal for managing large volumes of unstructured data such as images, videos, and

logs. Here’s how MinIO handles unstructured data:

1. Object-Based Storage: Unstructured data is stored as objects in buckets, providing a

flexible way to manage diverse data types. Each object includes the data, metadata,

and a unique identifier.

2. Scalability and Performance: MinIO scales horizontally by adding more storage nodes

and supports high-speed operations, ensuring efficient management of petabytes of

unstructured data. It uses erasure coding for data redundancy and durability.

3. S3-Compatible API: MinIO uses the Amazon S3 API, allowing existing S3-based

applications to interact seamlessly with on-prem storage. This compatibility makes

integration straightforward.

4. Data Security: MinIO offers end-to-end encryption and fine-grained access control to

protect unstructured data. It also supports object locking in regulatory compliance.

5. Multi-Tenancy and Hybrid Cloud: MinIO supports multi-tenant environments and can

integrate with cloud storage for hybrid cloud setups, providing flexible data

management options.

22

Cloud Data Lake/Warehouse Solutions

Azure

Due to an on-premises data lake solution's potential storage and computing requirements,

some organizations opt to build their solutions through a cloud provider such as Microsoft

Azure, Amazon Web Services, and Google Cloud. These platforms can abstract away many

management duties of an on-premises data lake and allow endless scalability in exchange

for monthly hosting fees. After consulting with stakeholders, Azure was focused on for this

proof of concept. Every cloud provider offers similar capabilities, so the lessons learned from

this can be applied to other providers.

Several key technologies work together to build a comprehensive data lake solution on Azure

to provide robust data storage, processing, and analytics capabilities. These include Azure

Data Lake Storage for scalable and secure data storage, Azure Databricks for data

engineering and advanced analytics, Azure Synapse Analytics for integrated data exploration

and machine learning, Azure Data Factory for orchestrating data workflows, and Microsoft

Fabric, which unifies all these elements into a cohesive platform. Below is a detailed

description of each technology:

Azure Data Lake Storage

Azure Data Lake Storage (ADLS) is a scalable, secure storage solution optimized for big data

analytics, built on top of Azure Blob Storage. It integrates with Hadoop ecosystems by

offering HDFS-compatible access, allowing seamless use with tools like Apache Spark, Azure

Synapse Analytics, and Azure Databricks. Here are some of the key features of ADLS:

• Hierarchical Namespace

23

o Directory and File Structures: Unlike flat object storage, ADLS provides a

hierarchical namespace, meaning you can create directories, subdirectories,

and files. This structure enables more efficient data management, easier

navigation, and better performance for operations such as renaming, moving,

or deleting files.

o Performance Benefits: Hierarchical namespace allows for better organization,

which minimizes the overhead of listing files and improves data retrieval times

for large datasets.

• Massive Scalability

o Scalable to Exabytes: ADLS is built to scale infinitely, supporting vast amounts

of data across structured, semi-structured, and unstructured formats (e.g.,

CSV, JSON, AVRO, images, videos).

o Designed for Big Data Workloads: It’s optimized to support petabyte-scale data

lakes and IoT workloads, allowing real-time analytics, batch processing, and

long-term storage.

o Elasticity: The system automatically scales as data grows, providing seamless

scaling without manual intervention.

• Fine-Grained Access Control

o Role-Based Access Control (RBAC): Integrates with Azure Active Directory (AAD)

to allow administrators to assign role-based permissions to specific users or

groups. This enables better governance and security.

o Access Control Lists (ACLs): ACLs enable detailed access controls at the file and

directory level. You can set read, write, and execute permissions for specific

users or groups, providing fine-tuned access management.

o Multi-layered Security: Combines AAD, RBAC, and ACLs to provide enterprise-

level security over sensitive datasets.

• Tiered Storage

o Hot Tier: Optimized for frequently accessed data, providing low-latency access

at a higher cost.

o Cool Tier: Designed for infrequently accessed data, balancing performance

and lower storage costs.

o Archive Tier: Best suited for long-term, rarely accessed data, with the lowest

cost but longer retrieval times. Data stored in this tier can be rehydrated when

needed.

o Automatic Lifecycle Management: You can configure policies to automatically

transition data between these tiers based on usage patterns, optimizing

storage costs.

24

• Data Encryption

o Automatic Encryption at Rest: All data stored in ADLS is encrypted by default

using AES-256 encryption, ensuring data is always secure.

o Customer-Managed Keys (CMK): In addition to Azure-managed encryption

keys, you can manage your own encryption keys via Azure Key Vault, giving

you more control over encryption and compliance.

o Encryption in Transit: ADLS supports TLS (Transport Layer Security) to encrypt

data in transit, ensuring secure communication between your application and

storage.

• Hadoop Integration

o HDFS-Compatible API: ADLS offers native Hadoop Distributed File System

(HDFS) APIs, allowing Hadoop-based applications like Apache Spark, Hive, and

Pig to directly read and write to the data lake without code changes.

o Seamless Data Access: This HDFS compatibility extends to any analytics tool

that operates on top of Hadoop ecosystems, enabling easy access to data

stored in ADLS for data processing tasks.

o No Application Rewrites: Applications that previously used HDFS can easily

transition to ADLS without requiring modifications to the application logic.

• Performance Optimization

o High Throughput for Large Data Volumes: ADLS is optimized for high-

bandwidth workloads like analytics and IoT, providing the ability to process

large amounts of data in parallel with low latency.

o Fast Data Ingestion: ADLS supports batch and streaming data ingestion,

making it suitable for real-time analytics pipelines and high-velocity data

processing.

o Efficient Operations on Big Data: The hierarchical namespace reduces the

overhead associated with operations such as renaming, listing, and deleting

files, resulting in faster overall performance, especially for big data scenarios.

• Hybrid Cloud and On-Premises Integration

o Azure Stack Integration: ADLS can be extended to on-premises environments

via Azure Stack, allowing you to build hybrid architectures that span both on-

premises and cloud environments.

o Azure Arc: ADLS supports Azure Arc, enabling you to manage and secure data

across hybrid and multi-cloud environments. This allows you to extend data

lake capabilities to other public clouds or on-premises environments.

25

o Seamless Data Migration: Tools like Azure Data Factory and third-party

migration tools can be used to move data from on-premises systems, legacy

storage solutions, or other cloud platforms into ADLS.

• Analytics

o Azure Synapse Analytics: ADLS is deeply integrated with Azure Synapse

Analytics, which allows you to query and analyze massive datasets stored in

ADLS using SQL, Spark, or Data Explorer pools. Synapse can read data directly

from ADLS, facilitating fast and scalable analytics.

o Azure Databricks: Databricks provides a unified analytics platform for running

ETL jobs, machine learning, and real-time analytics on data stored in ADLS.

This allows for large-scale data processing in a Spark-based environment.

o Azure Data Factory: Enables orchestration of data pipelines into and out of

ADLS. Data Factory can move, transform, and process data, making ADLS an

essential part of ETL (Extract, Transform, Load) workflows.

• Monitoring and Management

o Azure Monitor and Log Analytics: Provides monitoring tools to track the

performance of your data lake, including operations, resource utilization, and

performance metrics. Log Analytics can query and analyze logs, offering

insights into how data is accessed and processed.

o Azure Storage Explorer: A graphical tool for browsing, managing, and

interacting with data stored in ADLS. It simplifies tasks such as file uploads,

downloads, and access management.

26

Azure DataBricks

Azure Databricks is a unified analytics platform that integrates with Azure to provide a

scalable environment for big data engineering, machine learning, and real-time analytics.

Built on Apache Spark, Databricks simplifies collaboration between data engineers, data

scientists, and business analysts through a unified workspace. Below is an in-depth look at

its key technological aspects:

• Apache Spark Foundation

o Built on Apache Spark: Azure Databricks is designed around Apache Spark, a

powerful distributed processing engine. It provides out-of-the-box support for

Spark APIs in languages like Python, Scala, SQL, and R, making it ideal for high-

performance data processing, ETL, and analytics tasks.

o Unified Data Processing: Azure Databricks allows batch and real-time data

processing, enabling use cases like data streaming, machine learning, and

interactive analytics.

o Cluster Management: Databricks automates the setup and configuration of

Spark clusters, allowing dynamic scaling based on workload requirements,

which improves efficiency and reduces cost.

• Collaborative Workspace

o Notebooks: Databricks provides interactive notebooks where data scientists,

engineers, and analysts can collaborate. These notebooks support multiple

27

languages (Python, Scala, SQL, R) within the same environment and allow live

sharing of code, data visualizations, and outputs.

o Version Control Integration: Databricks integrates with GitHub, Azure DevOps,

and other version control systems, enabling collaborative coding and

seamless version management.

o Real-Time Collaboration: Multiple users can collaborate in real-time within a

single notebook, making it easier to collaborate on projects and streamline

communication across teams.

• Data Engineering

o ETL and Data Pipelines: Databricks is optimized for Extract, Transform, and

Load (ETL) processes, focusing on building scalable and reliable data pipelines.

It offers native integration with Azure Data Lake Storage (ADLS) and Azure Blob

Storage, allowing seamless data ingestion, transformation, and export.

o Delta Lake: A key feature of Databricks is Delta Lake, an open-source storage

layer that brings ACID (Atomicity, Consistency, Isolation, Durability)

transactions to Spark, making data lakes more reliable. Delta Lake also

provides features like schema enforcement, time travel (data versioning), and

data indexing for fast reads.

o Job Scheduling: Databricks offers built-in tools for job scheduling and

monitoring, enabling automated execution of data engineering pipelines and

integration with tools like Azure Data Factory for orchestrating workflows.

• Scalability and Performance

o Dynamic Autoscaling: Databricks clusters can automatically scale up or down

based on workload demands, ensuring that computational resources are used

efficiently. This feature helps reduce costs by allocating resources only when

needed.

o High-Performance Optimizations: Databricks provides optimizations like

caching, optimized execution plans, and vectorized query execution, which

speed up batch and streaming workloads.

o Parallelism and Distributed Processing: Leveraging Spark’s distributed nature,

Databricks can handle large datasets across multiple nodes, enabling parallel

processing and improving performance for data-intensive tasks.

• Data Integration

o Azure Data Services Integration: Databricks is fully integrated with Azure data

services, including Azure Data Lake Storage, Azure Synapse Analytics, Azure

SQL Database, and Cosmos DB. This makes it easy to ingest, process, and

analyze data from various sources.

28

o Structured Streaming: Databricks supports real-time data processing via

structured streaming, allowing for the creation of streaming data pipelines

and real-time analytics use cases. It also provides connectors for event hubs

and IoT devices.

o Data Ingestion: Supports multiple data ingestion methods, such as batch

ingestion, streaming ingestion, and integration with data lakes and databases,

making it versatile for various data sources.

• Security and Governance

o Azure Active Directory Integration: Databricks integrates with Azure Active

Directory (AAD) for single sign-on (SSO) and role-based access control (RBAC),

ensuring that only authorized users can access data and compute resources.

o Data Encryption: All data processed in Databricks is encrypted at rest and in

transit, using AES-256 encryption for storage and TLS for data in transit,

ensuring data security throughout its lifecycle.

o Compliance and Certifications: Databricks adheres to various compliance

standards such as GDPR, HIPAA, SOC 2, and ISO certifications, making it

suitable for use cases with strict regulatory requirements.

o Audit Logging: Databricks provides audit logging capabilities, allowing

administrators to track user actions, cluster configurations, and data access to

ensure compliance and governance.

• Delta Lake

o ACID Transactions: Delta Lake enables ACID transactions, ensuring reliable

and consistent data operations in data lakes. This brings transactional

guarantees to big data storage, improving reliability and eliminating issues like

data corruption.

o Schema Enforcement and Evolution: Delta Lake enforces data schema,

ensuring that data adheres to expected structures and allows schema

evolution to accommodate changes in data over time.

o Time Travel: Delta Lake’s time travel feature allows users to query historical

data versions, enabling access to previous states of the data or perform

rollback operations when necessary.

o Performance Optimizations: Delta Lake supports data compaction and

indexing to improve performance when reading or querying large datasets.

This reduces query latency and improves overall system efficiency.

• Monitoring and Management

o Cluster Monitoring: Azure Databricks provides built-in tools for monitoring

cluster performance, resource usage, and workload execution. You can track

metrics like CPU and memory utilization in real-time and adjust as needed.

29

o Job Execution Monitoring: Databricks allows you to monitor the status of

scheduled jobs, including details on job runs, success/failure rates, and

execution times. Alerts and notifications can be configured to respond to

issues in real-time.

o Logs and Audit Trails: Databricks generates detailed logs of all operations,

making tracking and troubleshooting issues easy. It integrates with Azure

Monitor and Log Analytics for advanced monitoring and logging.

• Pricing and Cost Management

o Pay-As-You-Go: Databricks uses a consumption-based pricing model, where

you pay for the resources (compute, storage) your clusters use. It offers

flexibility in pricing based on workload and usage patterns.

o Cluster Cost Management: Databricks includes tools for monitoring cluster

usage and costs, allowing administrators to track resource usage and optimize

clusters to reduce costs. Autoscaling and auto-termination features help

minimize waste.

o Reserved Pricing: Discounts are available for reserved instance pricing,

allowing organizations to commit to certain workloads for extended periods

in exchange for lower rates.

Azure Synapse Analytics

Azure Synapse Analytics is a comprehensive analytics service that combines big data and

data warehousing into a unified environment. It enables users to ingest, prepare, manage,

and analyze data for immediate business intelligence and machine learning needs. Below is

an in-depth look at the key technological aspects of Azure Synapse Analytics:

• Unified Analytics Platform

o Integration of Data Warehousing and Big Data: Azure Synapse combines

traditional data warehousing with big data analytics, allowing you to analyze

relational and non-relational data from a single platform. You can query

30

structured and unstructured data across data lakes and data warehouses

using a unified SQL experience.

o Synapse Studio: This unified development environment enables users to build

end-to-end analytics solutions in one interface. Synapse Studio integrates data

exploration, preparation, orchestration, and business intelligence.

• Data Integration and Orchestration

o Azure Data Factory Integration: Azure Synapse has built-in data integration

features from Azure Data Factory. It provides over 90 pre-built connectors to

seamlessly ingest data from on-premises systems, cloud platforms, and

various applications. This makes it easy to move, transform, and orchestrate

data pipelines.

o Data Pipelines and Orchestration: Synapse offers a powerful orchestration

engine for ETL/ELT workflows. It allows you to automate the movement and

transformation of data across various services and storage types, making it

easier to manage complex data pipelines.

• Data Lake Integration

o Deep Integration with Azure Data Lake Storage (ADLS): Synapse is tightly

integrated with Azure Data Lake, allowing users to query and analyze large

datasets stored in Azure Data Lake Storage Gen2 directly from Synapse. This

eliminates the need to move or copy data between systems, reducing

complexity and costs.

o SQL On-Demand (Serverless SQL): Synapse provides a serverless option that

enables users to run SQL queries on data in data lakes without providing

resources upfront. It is ideal for ad-hoc queries or exploration of large datasets

without needing a dedicated data warehouse.

• Analytics Engines

o Dedicated SQL Pools (Formerly SQL Data Warehouse): Synapse offers a

dedicated SQL pool for running high-performance data warehousing

workloads. This allows for the parallel processing of queries across distributed

compute nodes, ensuring fast query performance even for large datasets.

o Serverless SQL Pools: The serverless SQL pools enable on-demand querying

of data in data lakes or external data sources. Users only pay for the resources

used, making it cost-efficient for occasional or exploratory queries.

o Apache Spark Integration: Synapse includes fully managed Apache Spark

pools, allowing users to leverage the power of distributed data processing for

big data analytics and machine learning tasks. Spark clusters can be

dynamically allocated based on workload and integrate seamlessly with other

Synapse features like data orchestration and monitoring.

31

• Data Exploration and Querying

o SQL Querying Across Data Lakes and Warehouses: With Synapse, you can use

SQL to query data stored in both data lakes and data warehouses from a single

interface. This makes it easy for users familiar with SQL to query large,

distributed datasets.

o PolyBase: Synapse uses PolyBase to allow querying of external data sources

without importing data into Synapse. Without moving the data, you can

connect and query data from different storage systems, including Azure Blob

Storage, Hadoop, and even SQL Server.

• Data Security and Compliance

o Comprehensive Security Features: Synapse provides advanced security

features, including data encryption (in transit and at rest), network isolation,

and data masking to protect sensitive information. It integrates with Azure

Active Directory (AAD) for role-based access control (RBAC) to manage

permissions.

o Data Encryption: Azure Synapse encrypts all data at rest using AES-256

encryption. Users can manage their encryption keys via Azure Key Vault or use

Azure-managed keys.

o Virtual Networks (VNET) and Private Link: Synapse supports the use of Virtual

Networks for enhanced security, enabling private communication between

Synapse and other Azure resources. With Private Link, you can securely access

Synapse over a private network.

o Audit and Compliance: Azure Synapse is compliant with various industry

standards like GDPR, HIPAA, and ISO. It provides logging and auditing features

to track data access and changes, ensuring regulatory requirements are met.

• Synapse SQL

o T-SQL Support: Azure Synapse supports Transact-SQL (T-SQL), which makes it

familiar for SQL Server users to run complex queries, create stored

procedures, and interact with databases.

o Query Optimization and Indexing: Synapse uses advanced query optimization

techniques to enhance query performance, including distributed query plans

and the use of indexed views and materialized views. This makes it efficient

for querying large datasets with complex join and aggregation operations.

• Real-Time Analytics and Streaming

o Event Hubs and IoT Integration: Synapse supports integration with Azure

Event Hubs, IoT Hub, and Azure Stream Analytics for real-time data ingestion

and analytics. This allows real-time processing of streaming data from various

sources, such as IoT devices, social media feeds, and telemetry systems.

32

o Real-Time Data Processing with Apache Spark: Apache Spark in Synapse allows

for real-time data processing and stream analytics. Spark Streaming is natively

supported for handling high-velocity data streams and integrating real-time

analytics into existing data pipelines.

• Scalability and Performance

o Massively Parallel Processing (MPP): Azure Synapse uses MPP architecture,

which splits large datasets across multiple nodes and runs queries in parallel.

This ensures fast query execution and scalability for large data workloads.

o Elasticity and Auto-Scaling: Synapse allows for auto-scaling based on workload

demand. Users can scale resources up or down dynamically, depending on the

volume of data and complexity of queries. This helps optimize cost and

performance.

o Caching and Data Partitioning: Synapse provides intelligent caching and data

partitioning to improve query performance. It automatically partitions large

datasets and uses adaptive query processing to handle complex workloads

efficiently.

• Business Intelligence and Reporting

o Power BI Integration: Azure Synapse integrates directly with Power BI, allowing

users to create and share real-time dashboards and reports from Synapse

data. Power BI reports can be embedded within Synapse Studio, providing an

end-to-end data exploration and visualization experience.

o Data Visualization in Synapse Studio: Synapse Studio includes built-in data

visualization tools, allowing users to explore data, create charts, and generate

reports without needing external BI tools. This supports interactive data

analysis for business users.

• Monitoring and Management

o Azure Monitor Integration: Synapse integrates with Azure Monitor and Log

Analytics to comprehensively monitor workloads, resource utilization, and

query performance. You can set up alerts and notifications for operational

issues, making it easier to manage complex workloads.

o Workload Management: Synapse provides workload management features

that allow users to prioritize specific workloads and allocate resources

accordingly. This ensures critical queries or data processing tasks get the

required resources during peak times.

33

Azure Data Factory

Azure Data Factory (ADF) is a cloud-based data integration service that allows you to create,

orchestrate, and automate data movement and transformation workflows across on-

premises and cloud environments. ADF is an essential tool for building Extract, Transform,

Load (ETL) and Extract, Load, Transform (ELT) workflows for big data and analytics. Below is

an in-depth look at the key technological aspects of Azure Data Factory:

• Data Integration and Orchestration

o Data Movement: Azure Data Factory enables the movement of data from over

90+ supported data sources, including on-premises databases, cloud-based

services (e.g., Azure SQL Database, Azure Data Lake, and Cosmos DB), and

Software-as-a-Service (SaaS) applications like Salesforce, Google Analytics, and

Dynamics 365.

34

o Data Transformation: ADF supports data transformation via code-free data

flows (data mapping and wrangling) or by running custom code in languages

such as SQL, Python, or Spark within ADF pipelines. It can scale to process large

amounts of data efficiently.

o ETL/ELT Pipelines: ADF supports traditional ETL and ELT architectures. For ETL,

data is extracted, transformed, and loaded into a destination data store. For

ELT, data is loaded directly into the destination, and transformations happen

afterward using the processing power of the destination (such as Azure

Synapse Analytics or SQL databases).

• Mapping Data Flows

o Code-Free Data Transformation: Mapping Data Flows in ADF allows users to

visually design data transformation workflows without writing code. This

enables data engineers to build complex data transformations, including joins,

aggregations, filtering, sorting, and more.

o Auto-Scaling: Mapping Data Flows automatically scale based on the data

volume, ensuring efficient processing for small and large datasets. You don’t

have to manage infrastructure; ADF takes care of provisioning, scaling, and

resource allocation.

o Transformation Capabilities: With Mapping Data Flows, you can design data

pipelines that involve data type conversion, derived column creation, and

normalization/denormalization of data. It also supports schema drift handling

for flexible data models.

• Wrangling Data Flows

o Power Query for Data Wrangling: ADF integrates Power Query, the data

transformation technology behind Power BI, to provide a code-free data

wrangling experience. Wrangling Data Flows allow users to clean and reshape

their data using an intuitive, Excel-like interface before loading it into a

destination.

o Data Profiling: Wrangling Data Flows provides data profiling capabilities, which

allow users to understand the shape, quality, and distribution of data before

performing transformations. This enables better data preparation and

cleaning.

• Pipelines and Activities

o Pipeline Design: A pipeline in ADF is a logical grouping of activities that perform

a unit of work. Activities could include data movement, transformation, control

flow, and external processing steps.

o Control Flow: ADF provides control flow activities like branching, conditional

execution, looping (ForEach), and error handling to orchestrate complex

35

workflows. These control flow activities allow users to design robust and

flexible data pipelines.

o Linked Services: Linked services define the connection information for ADF to

communicate with external data sources and compute resources, such as

Azure Blob Storage, on-premises SQL databases, or machine learning services.

ADF supports various linked services for hybrid cloud and multi-cloud

architectures.

• Data Movement and Copy Activity

o Copy Activity: The Copy Activity in ADF moves data from a source to a

destination. It can efficiently handle high-volume data transfers, supporting

batch and incremental data loads.

o Parallelism and Performance: ADF’s data movement engine supports high-

throughput, parallel data movement across multiple compute nodes,

improving the performance of large-scale data transfers. It also allows data

movement to be throttled and monitored for fine-tuned performance control.

o On-Premises Integration: ADF supports moving data from on-premises

systems to the cloud using a self-hosted integration runtime. This enables

hybrid data environments and seamless data movement between on-

premises systems and cloud-based services.

• Integration Runtimes

o Azure Integration Runtime: Azure provides a fully managed compute

infrastructure to execute activities like data movement, transformation, and

ADF orchestration. This runtime is elastic and scales automatically.

o Self-Hosted Integration Runtime: For on-premises data sources or network-

restricted environments, ADF provides a self-hosted integration runtime that

allows you to securely integrate with local resources without exposing them to

the public internet. This is ideal for hybrid cloud environments.

o SSIS Integration Runtime: ADF provides an Azure-hosted environment for

running SQL Server Integration Services (SSIS) packages. This allows

organizations to lift-and-shift existing SSIS ETL workloads into Azure without

requiring significant modifications.

• Data Transformation with Compute Services

o Azure Databricks Integration: ADF can orchestrate data transformation using

Azure Databricks, a powerful Spark-based analytics platform. Users can trigger

Databricks notebooks, jobs, or activities directly within ADF pipelines, allowing

for seamless integration of big data processing.

o Azure HDInsight and Spark Integration: ADF supports HDInsight, a managed

Hadoop and Spark service, for large-scale data processing. Users can

36

orchestrate Apache Spark, Hadoop MapReduce, Hive, and other HDInsight

jobs within ADF pipelines.

o Azure Functions and Custom Code: ADF can trigger custom code through

Azure Functions, which allows for advanced processing capabilities beyond

what is natively available in ADF. This extends ADF’s flexibility for handling

specialized data transformation tasks.

• Scheduling and Monitoring

o Trigger-Based Pipelines: ADF supports multiple triggering mechanisms,

including time-based triggers (schedules) and event-based triggers (e.g., when

new data arrives in a blob storage container). This allows for both scheduled

and real-time data pipeline execution.

o Data Pipeline Monitoring: ADF provides real-time monitoring tools that allow

users to track the status of their pipelines, view historical runs, and identify

performance bottlenecks. ADF also integrates with Azure Monitor for

advanced monitoring, alerting, and diagnostics.

o Error Handling and Retry Logic: ADF provides built-in error handling and retry

mechanisms. Pipelines can be configured to automatically retry failed

activities or branch based on error conditions, ensuring robustness and

resilience in workflows.

• Data Governance and Security

o Azure Role-Based Access Control (RBAC): ADF integrates with Azure Active

Directory for role-based access control, ensuring users have appropriate

permissions to perform activities on datasets and pipelines. This enhances

data governance and security.

o Managed Identity Support: ADF supports managed identities for secure

authentication to Azure services, reducing the need to manage credentials.

This allows secure communication between ADF and Azure resources without

embedding secrets.

o Data Encryption: Data in ADF is encrypted at rest and in transit using AES-256

encryption for data storage and TLS for secure communication. This ensures

that data remains protected throughout its lifecycle.

o Auditing and Logging: ADF provides comprehensive logging and auditing

features, which track the execution of pipelines, data movement, and

transformation activities. This supports compliance with industry standards

and allows for troubleshooting and auditing workflows.

• Hybrid and Multi-Cloud Support

o On-Premises Integration: ADF enables hybrid cloud scenarios by supporting

on-premises data sources through the self-hosted integration runtime. This

37

allows for seamless data movement between on-premises environments and

the cloud.

o Multi-Cloud Data Integration: ADF supports multi-cloud environments,

enabling integration with services from other cloud providers such as AWS,

Google Cloud, and others. This makes ADF a versatile tool for organizations

operating in a multi-cloud environment.

Azure Ecosystem Flexibility

The technologies within the Azure ecosystem—Azure Data Lake Storage, Azure Synapse

Analytics, Azure Databricks, Azure Data Factory, and Power BI—can be used together as part

of a seamless data pipeline or independently, depending on an organization’s specific needs.

Using the Technologies Together:

When integrated, these tools create a unified data architecture that handles all stages of the

data lifecycle:

1. Azure Data Lake Storage (ADLS): Acts as the foundation for storing raw data,

whether structured or unstructured. It is a scalable data lake that supports advanced

analytics, machine learning, and big data workloads.

2. Azure Data Factory (ADF): Orchestrates data movement into and out of ADLS. ADF

can extract data from on-premises or cloud-based systems, transform it, and load it

into Azure Synapse Analytics or Databricks for further processing.

3. Azure Synapse Analytics: Once data is in ADLS, Synapse provides the analytics layer,

offering a unified workspace for querying, transforming, and analyzing large datasets.

It seamlessly connects with ADLS to perform real-time analytics, data exploration, and

complex SQL-based queries over structured or unstructured data.

4. Azure Databricks: Adds a powerful data engineering and machine learning layer.

Databricks can directly read from and write to ADLS, allowing data engineers and

scientists to build machine learning models, perform advanced data transformations,

or preprocess data before loading it into Synapse for further querying.

Together, these tools form a data lakehouse architecture that supports the entire data

lifecycle—from raw data storage to advanced analytics and reporting—within a single,

connected ecosystem.

Using the Technologies Independently:

Each tool within the Azure ecosystem is powerful enough to be used independently,

depending on specific use cases:

• Azure Data Lake Storage (ADLS): Can be used standalone to store vast amounts of

raw data for archiving or basic big data analytics without any advanced processing.

38

• Azure Synapse Analytics: It can function as a robust, standalone data warehouse or

data analytics tool for querying, transforming, and analyzing data from various

sources without needing a data lake.

• Azure Databricks: Can be used independently as a big data and machine learning

platform. Databricks are often leveraged for data engineering tasks, machine learning

workflows, or to run Spark jobs for high-performance data processing.

• Azure Data Factory (ADF): Works independently as an integration and orchestration

service to automate data pipelines between multiple systems, even if the final

destination isn’t within Azure services.

39

Appendix A: API Tables

40

Alerts

/v1/alerts

Column Name Data Type Comments

alertID String ID

alertStartDateTime DateTime

intersectionId String

Type String

Cameras

/v1/intersections/{intersectionsId}/cameras

Column Name Data Type Comments

Cameras Camera Object

List

 Id Guid

Type String

Label String

streamUrl String

/v1/intersections/{intersectionId}/cameras/{cameraId}/snapshot

Column Name Data Type Comments

Snapshot of current camera

condition

JPEG

Diagnostics

/v1/intersections/{intersectionId}/communicationDevices/diagnostics

Column Name Data Type Comments

additionalProp1 Diagnostic object 1

Name String

State String

Description String

additionalProp2 Diagnostic object 1

Name String

State String

Description String

additionalProp3 Diagnostic object 1

Name String

State String

41

Column Name Data Type Comments

 Description String

/v1/intersections/{intersectionId}/detectionDevices/diagnostics

Column Name Data Type Comments

additionalProp1 Diagnostic object 1

Name String

State String

Description String

additionalProp2 Diagnostic object 1

Name String

State String

Description String

additionalProp3 Diagnostic object 1

Name String

State String

Description String

Intersections

/v1/intersections

Column Name Data Type Comments

Intersections

List of Intersection

objects

Id Guid

Lat Double

Long Double

Name String

customID string

/v1/intersections/hardware

Column Name Data Type Comments

Intersections

List of Intersection

hardware objects

Id Guid

Devices List of device

objects

Id Guid

Serial String

Label String

42

Column Name Data Type Comments

Connectivity Single Connectivity

object

Connected Bool

Timestamp DateTime

disconnectReason String

detectionDevices List of

DetectionDevices

hardware info

Id Guid

Serial String

Label String

Connectivity Single connectivity

object

Connected Bool

timestamp dateTime

disconnectedReason String

Peripherals List of peripheral

objects

Name String

Type String

/v1/intersections/{intersectionsId}

Column Name Data Type Comments

Id Guid

Lat Double

Long Double

Name String

customID String

/v1/intersections/{intersectionsId}/hardware/detectionConfiguration

Column Name Data Type Comments

LastUpdated dateTime

Hash String

Configuration String

/v1/intersections/{intersectionId}/hiresdata

Notes: Microsoft Word - 317857-text.native.1353009594.docx (purdue.edu)

https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1002&context=jtrpdata

43

Column Name Data Type Comments

Timestamp dateTime

eventCode Int

eventParam Int

GET

/v1/intersections/{intersectionId}/notes – get notes

Column Name Data Type Comments

Content String

PUT

/v1/intersections/{intersectionId}/notes – update notes

Column Name Data Type Comments

Content String

Organizations

/v1/organizations/{organizationId}

Column Name Data Type Comments

Id Guid

Name String

Priority Requests

/v1/intersections/{intersectionId}/priorityCapabilities

Column Name Data Type Comments

OutputMode String

prioritySupported Bool

GET

/v1/intersections/{intersectionId}/priorityCapabilities

Column Name Data Type Comments

priorityRequests

List of priority

request objects

Id String

timeToLive Int

msgId String

obuId String

tripId String

44

Column Name Data Type Comments

Type String

preemptionData Object

 preemtpionNumber Int

 PriorityData Object

requestId Int

vehicleId String

vehicleClass int

vehicleClassLevel int

serviceStrategy int

POST

/v1/intersections/{intersectionId/priorityRequests

Column Name Data Type Comments

priorityRequests

List of priority

request objects

Id String

timeToLive Int

msgId String

obuId String

tripId String

Type String

preemptionData Object

 preemtpionNumber Int

 PriorityData Object

requestId Int

vehicleId String

vehicleClass int

vehicleClassLevel int

serviceStrategy int

DELETE

/v1/intersections/{intersectionId}/priorityRequests/{priorityRequestId}

[Ends specified priority request {priorityRequestId} at specified intersection {intersectionId}]

GET

/v1/intersections/{intersectionId}/priorityRequests/{priorityRequestId}

45

Column Name Data Type Comments

Id String

timeToLive Int

msgId String

obuId String

tripId String

Type String

preemptionData Object

 preemptionNumber Int

priorityData Object

requestId Int

vehicleId String

vehicleClass Int

vehicleClassLevel Int

serviceStrategy string

startedTimestamp DateTime

lastUpdatedTimestamp DateTime

ttlRemaining Int

endedTimestamp DateTime

Status String

Error Object

Message String

Timestamp DateTime

Error String

Status Int

Path String

PUT – update the timeToLive of a given priority request at a certain intersection.

/v1/intersections/{intersectionId}/priorityRequests/{priorityRequestId}

{body}

Column Name Data Type Comments

timeToLive Int

Turning Movement Counts

/v1/intersections/{intersectionId}/tmc

Column Name Data Type Comments

Timestamp DateTime

Class String

Entrance String

46

Column Name Data Type Comments

Exit String

Qty Int

/v1/intersections/{intersectionId}/tmc/crosswalk

Column Name Data Type Comments

Timestamp DateTime

Class String

crosswalkSide String

Direction String

qty int

/v1/intersections/{intersectionId}/tmc/csv

The return value is tmc data in a CSV file format rather than an object list.

/v1/intersections/{intersectionId}/tmc/lanes

Column Name Data Type Comments

Timestamp DateTime

Class String

Entrance String

Exit String

laneId String

Qty int

Median Travel Times

/v1/medianTravelTimes

Column Name Data Type Comments

travelTime

List of travelTime

Objects

startTime DateTime

endTime DateTime

Median Float

Data Confidence String

Users

Column Name Data Type Comments

externalUserId String

organizationName String

